1. 16.3 案例:商品评论情感分析
1.1. 学习目标
- 应用朴素贝叶斯API实现商品评论情感分析
1.2. 1.api介绍
- sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
- 朴素贝叶斯分类
- alpha:拉普拉斯平滑系数
1.3. 2.商品评论情感分析
1.3.1. 2.1 步骤分析
- 1)获取数据
- 2)数据基本处理
- 2.1) 取出内容列,对数据进行分析
- 2.2) 判定评判标准
- 2.3) 选择停用词
- 2.4) 把内容处理,转化成标准格式
- 2.5) 统计词的个数
- 2.6)准备训练集和测试集
- 3)模型训练
- 4)模型评估
1.3.2. 2.2 代码实现
import pandas as pd
import numpy as np
import jieba
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
- 1)获取数据
# 加载数据
data = pd.read_csv("./data/书籍评价.csv", encoding="gbk")
data
- 2)数据基本处理
# 2.1) 取出内容列,对数据进行分析
content = data["内容"]
content.head()
# 2.2) 判定评判标准 -- 1好评;0差评
data.loc[data.loc[:, '评价'] == "好评", "评论标号"] = 1 # 把好评修改为1
data.loc[data.loc[:, '评价'] == '差评', '评论标号'] = 0
# data.head()
good_or_bad = data['评价'].values # 获取数据
print(good_or_bad)
# ['好评' '好评' '好评' '好评' '差评' '差评' '差评' '差评' '差评' '好评' '差评' '差评' '差评']
# 2.3) 选择停用词
# 加载停用词
stopwords=[]
with open('./data/stopwords.txt','r',encoding='utf-8') as f:
lines=f.readlines()
print(lines)
for tmp in lines:
line=tmp.strip()
print(line)
stopwords.append(line)
# stopwords # 查看新产生列表
#对停用词表进行去重
stopwords=list(set(stopwords))#去重 列表形式
print(stopwords)
# 2.4) 把“内容”处理,转化成标准格式
comment_list = []
for tmp in content:
print(tmp)
# 对文本数据进行切割
# cut_all 参数默认为 False,所有使用 cut 方法时默认为精确模式
seg_list = jieba.cut(tmp, cut_all=False)
print(seg_list) # <generator object Tokenizer.cut at 0x0000000007CF7DB0>
seg_str = ','.join(seg_list) # 拼接字符串
print(seg_str)
comment_list.append(seg_str) # 目的是转化成列表形式
# print(comment_list) # 查看comment_list列表。
# 2.5) 统计词的个数
# 进行统计词个数
# 实例化对象
# CountVectorizer 类会将文本中的词语转换为词频矩阵
con = CountVectorizer(stop_words=stopwords)
# 进行词数统计
X = con.fit_transform(comment_list) # 它通过 fit_transform 函数计算各个词语出现的次数
name = con.get_feature_names() # 通过 get_feature_names()可获取词袋中所有文本的关键字
print(X.toarray()) # 通过 toarray()可看到词频矩阵的结果
print(name)
# 2.6)准备训练集和测试集
# 准备训练集 这里将文本前10行当做训练集 后3行当做测试集
x_train = X.toarray()[:10, :]
y_train = good_or_bad[:10]
# 准备测试集
x_text = X.toarray()[10:, :]
y_text = good_or_bad[10:]
- 3)模型训练
# 构建贝叶斯算法分类器
mb = MultinomialNB(alpha=1) # alpha 为可选项,默认 1.0,添加拉普拉修/Lidstone 平滑参数
# 训练数据
mb.fit(x_train, y_train)
# 预测数据
y_predict = mb.predict(x_text)
#预测值与真实值展示
print('预测值:',y_predict)
print('真实值:',y_text)
- 4)模型评估
mb.score(x_text, y_text)
应用说明:百度AI情感倾向分析
1.4. 3 总结
- API:sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
- 朴素贝叶斯分类
- alpha:拉普拉斯平滑系数
- 朴素贝叶斯分类